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Objetive of the presentation

Through of the symmetry analysis, a solution is given to the heat equation

∆gF u = ut (1)

defined in the Riemannian manifold M induced by the family of Gaus-
sian distributions of parameters (µ, σ), where gF is the Fisher metric with
diagonal representation

gF =

[
1

σ2 0
0 2

σ2

]

. (2)
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Lie Group

A group is a set G together with a group operation, usually called multi-
plication, such that for any two elements g and h of G , the product g · h
is again an element of G . The group operation is required to satisfy the
axioms of: associative, modulative and there is an inverse for each element
in the set.

An r -parameter Lie group is a group G which also carries the structure
of an r -dimensional smooth manifold in such a way the both the group
operation m : G × G → G defined by m(g , h) = g · h and the inversion
i : G → G defined by i(g) = g−1 are smooth maps between manifolds.
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Symmetries

A symmetry is a transformation that leaves some particular object invari-
ant. For example, transformations x̄ = eξx and ȳ = e−ξy leave the
differential equation dy

dx
= xy3 invariant since

dȳ

dx̄
= e−2ξ dy

dx
=
[
eξx
] [
e−3ξy3

]
= x̄ ȳ3 .

The transformations x̄i = fi (xj , ξ) under the composition operation form a
uniparameter Lie group, where ξ is the parameter. Some of the properties
they fulfill are:

1 fi is a smooth function of the variable xj .

2 fi is an analytic function in the parameter ξ.

3 ξ = 0 can be chosen as the identity element of the group.
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Infinitesimal Transformation

For the x and y variables, these transformations are written as

x̄ = f (x , y , ξ) and ȳ = g(x , y , ξ)

where x = f (x , y , 0) and y = g(x , y , 0). According to the expansion of
the Taylor series, the transformations x̄ and ȳ they can be seen as

x̄ =f (x , y , 0) +
df

dξ

∣
∣
∣
ξ=0

ξ + O(ξ2) = x + X (x , y)ξ + O
(
ξ2
)
,

ȳ =g(x , y , 0) +
dg

dξ

∣
∣
∣
ξ=0

ξ + O(ξ2) = y + Y (x , y)ξ + O
(
ξ2
)
.

These equalities are called infinitesimal transformations and X (x , y) and
Y (x , y) are called infinitesimals.
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Example 1: Riccati equation

Consider the Riccati equation

dy

dx
= y2 − y

x
− 1

x2
. (3)

whose solution depends of a known solution. Table 1 shows two trans-
formations and the consequences they bring about this equation. The
equation ds

dr
obtained is of separable variables and it is also invariant for

the transformations r̄ = r and s̄ = s + ξ.

Transformations x = es , y = re−s x̄ = eξx , ȳ = e−ξy

Consequences ds
dr

= 1

r2−1

dȳ
dx̄

= ȳ2 − ȳ
x̄
− 1

x̄2 .

Table 1: Transformations in the Riccati equation.

Juan Carlos Arango Parra Solution to the heat equation via symmetry analysis



There is a connection

between the transformations

x =e
s
, x̄ =e

ξ
x ,

y =re
−s

. ȳ =e
−ξ
y .
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Let us see how to relate the infinitesimals X (x , y) y Y (x , y) with the vari-
ables s and r that transform the differential equation to separable variables.
Let r = r(x , y) and s = s(x , y), invariant equations under x̄ and ȳ , that
is, r̄ = r(x̄ , ȳ) and s̄ = s(x̄ , ȳ). Derivating respect to ξ you have

∂ r̄

∂ξ
=

∂r

∂x̄

∂x̄

∂ξ
+

∂r

∂ȳ

∂ȳ

∂ξ
and

∂ s̄

∂ξ
=

∂s

∂x̄

∂x̄

∂ξ
+

∂s

∂ȳ

∂ȳ

∂ξ
(4)

Since r̄ = r and s̄ = s + ξ, and making ξ = 0 equalities result

X (x , y)
∂r

∂x
+ Y (x , y)

∂r

∂y
= 0

︸ ︷︷ ︸

Xrx+Yry=0

and X (x , y)
∂s

∂x
+ Y (x , y)

∂s

∂y
= 1

︸ ︷︷ ︸

Xsx+Ysy=1

.

(5)
Whose solution determines the relationship between the infinitesimals and
the variables r and s.
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Riccati equation

For the Riccati (3), the infinitesimal transformations given by x̄ = eξx and
ȳ = e−ξy . The infinitesimals associated with these are:

X (x , y) =
dx̄

dξ

∣
∣
∣
ξ=0

= x and Y (x , y) =
dȳ

dξ

∣
∣
∣
ξ=0

= −y .

These infinitesimals induce the equalities

xrx − yry = 0 and xsx − ysy = 1 . (6)

By characteristics method, the solutions to equations (6) are r = R(xy)
and s = ln(x)+S(xy). If R is chosen as the identity function and S as the
null function then r = xy and s = ln(x) where x = es y y = re−s , that
equalities reduce the Riccati equation in an equation of separable variables.
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Classical equations

Below is the relationship between some of these elements for classical
ordinary differential equations

Equations Linear Riccati

Base form dy
dx

+ P(x)y = Q(x) dy
dx

= P(x)y2 + Q(x)y + R(x)
X = 0, Y = (y − y1)F (x)

Infinitesimal x̄ = x y1 is a solution and

Transformations ȳ = y + ξe−
∫
P(x)dx F (x) satisfies

F ′ + (2Py1 + Q)F = 0
System of x = r x = r

Transformations y = e−
∫
P(r)dr s y = y1 − 1

sF (r)

(s, r)

New Equation ds
dr

= e
∫
P(r)drQ(r) ds

dr
= a(r)

F (r)

Table 2: Results for the Linear and Riccati equations.
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Given a differential equation,

How do we obtain the

infinitesimals X (x , y) and

Y (x , y)?
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Lie Invariance Condition

We will look for invariances for the equation dy
dx

= F (x , y) under the
infinitesimal transformations x̄ and ȳ . By chain rule we have

dȳ

dx̄
=

dy

dx
+
[
Yx + (Yy − Xx) y

′ − Xy (y
′)2
]
ξ + O

(
ξ2
)
. (7)

We know that dȳ
dx̄

= F (x̄ , ȳ) and by the Taylor expansion for the F function
of ξ results

F (x̄ , ȳ) = F (x , y) + [XFx + YFy ] ξ + O
(
ξ2
)

(8)

Between the equations (7) and (8) we have the condition of Lie invariance

Yx + (Yy − Xx)F − XyF
2 = XFx + YFy . (9)

However, solving this equation will not be easy for PDEs.
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The infinitesimal Operator

In the invariance condition applied to differential equation dy
dx

= F (x , y),
the term XFx + YFy let us define the infinitesimal operator

Γ = X
∂

∂x
+ Y

∂

∂y
. (10)

The relations between the infinitesimals X and Y and the variables s and
r are written, according to the operator Γ, as

Γ r = 0 and Γ s = 1 .
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The infinitesimal Operator

The equation dy
dx

−F (x , y) = 0 depends on the variables x and y , however,
you can see a y ′ as another variable and with this the extended operator

is defined as

Γ(1) = X
∂

∂x
+ Y

∂

∂y
+ Y[x]

∂

∂y ′
. (11)

If we make ∆ = dy
dx

− F (x , y) = 0 then we can conclude that Γ(1)∆ = 0 if
and only if Y[x] = XFx + YFy . It will be written

Γ(1)∆
∣
∣
∣
∆=0

= 0 . (12)

Equation (12) leads us to a system of equations whose solution are in-
finitesimals X and Y , and with them, we can obtain the transformations
that reduce equation ∆ = dy

dx
− F (x , y) = 0 to separable variables.
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Extension to higher orders

The n-th largest extension of Γ is given by

Γ(n) = X
∂

∂x
+ Y

∂

∂y
+ Y[x]

∂

∂y ′ + Y[xx]
∂

∂y ′′ + . . .+ Y[nx]
∂

∂y (n)
,

where each coefficient is given by

Y[nx] = Dx

(
Y[(n−1)x]

)
− y (n)Dx(X ),

and Dx is the differential operator Dx = ∂
∂x

+y ′ ∂
∂y

+y ′′ ∂
∂y ′

+y ′′′ ∂
∂y ′′

+ . . ..

The invariance condition of the differential equation ∆
(
x , y , . . . , y (n)

)
= 0

is written as
Γ(n)∆

∣
∣
∣
∆=0

= 0 .
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Example 2: Heat Equation

Let us consider the one dimensional heat equation

ut = uxx , (13)

where ∆ = ut − uxx . This equation depends of three variables t, x and u,
although ut and uxx also act as variables. Hence, its infinitesimal operators
are

Γ∆ =

[

T
∂

∂t
+ X

∂

∂x
+ U

∂

∂u

]

(ut − uxx) = 0 ,

Γ(1)∆ = Γ∆+

[

U[t]
∂

∂ut
+ U[x ]

∂

∂ux

]

(ut − uxx) = U[t] ,

Γ(2)∆ = Γ(1)∆+

[

U[xx ]
∂

∂uxx
+ U[xt]

∂

∂uxt
+ U[tt]

∂

∂utt

]

(∆) = U[t] − U[xx ] .

Then equation (14) results

U[t] − U[xx] = 0 if ∆ = ut − uxx = 0. (14)
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Extended transformations in the heat equation

In general, the extended transformations have the form

U[t] = Dt(U)− utDt(T )− uxDt(X ) ,

U[x] = Dx(U)− utDx(T )− uxDx(X ) ,

U[xx] = Dx(U[x])− utxDx(T )− uxxDx(X ) ,

where Dt(U) = Ut + utUu and Dx(U) = Ux + uxUu are the total differ-
entials (this is same for X and T ). According to these extended transfor-
mations, equation (14) is rewritten as

[Ut − Uxx ] + [2Xx + Txx − Tt ] ut + [Xxx − Xt − 2Uux ] ux+

[2Xu + 2Txu] utux + [2Xux − Uuu] u
2

x + Tuuutu
2

x + Xuuu
3

x+

2Txutx + 2Tuuxuxx = 0. (15)
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Infinitesimals in the heat equation

Based on this equation, the system of equations results

Ut − Uxx = 0 (1) 2Xu + 2Txu = 0 (4) Xuu = 0 (7)
2Xx + Txx − Tt = 0 (2) 2Xux − Uuu = 0 (5) 2Tx = 0 (8)
Xxx − Xt − 2Uux = 0 (3) Tuu = 0 (6) 2Tu = 0 (9)

The solution of this system of equations has the form

T (t) = c0 + 2c1t + 4c2t
2 ,

X (t, x) = c3 + 2c4t + c1x + 4c2tx , (16)

U(t, x , u) =
(
c5 − 2c2t − c4x − c2x

2
)
u + C (t, x) .

where C (t, x) is a function that satisfies the heat equation Ct = Cxx and
each ci is constant.
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Exact solutions in the heat equation

Exact solutions via symmetry analysis through invariance conditions have
the form

Tut + Xux = U

where T , X and U are the infinitesimals obtained in (16). The solutions
to the heat equation are achieved by giving value to each constant, one
for one of them and zero for the others. Let’s see

i. c1 = 1, ci = 0 for the rest of the indexes and C (t, x) = 0. The
invariance condition is written as

2tut + xux = 0 .

By characteristics method, the solution u = F
(

x√
t

)

results. As u

satisfies the heat equation (13) then it is shown that

u(t, x) = k1 erf

(
x√
t

)

+ k2 where erf (w) =

∫ w

−∞
e−

r2

4 dr .
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Exact solutions in the heat equation

ii. c2 = 1, ci = 0 for the remaining indexes and C (t, x) = 0. The
invariance condition and the exact solution are

4t2ut + 2txux = −(2t + x2)u ,

u(t, x) = k1

x

t
√
t
e−

x2

4t + k2

1√
t
e−

x2

4t . (17)

iii. c3 = 1, ci = 0 for the rest of the indexes and C (t, x) = 0. For this
indexes set, the equation is deduced to dx = 0, du = 0 and dt = 0.
Whose solutions are constant for each variable. This also happens
when c5 = 1.

Obtaining the constants k1, k2 depends on the initial or boundary condi-
tions attached to the heat equation.
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Heat Kernel

iv. c4 = 1, ci = 0 for the rest of the indexes and C (t, x) = 0. The
invariance condition leads to the equation 2tut = −xu whose
solution is

u(t, x) =
k1√
t
e−

x2

4t .

This solution is known in the literature as Heat Kernel, where the
constant k1 is k1 = 1√

4π
.

The solution set of the heat equation (13) is

S =

{

k1 erf

(
x√
t

)

+ k2, k3

x

t
√
t
e−

x2

4t , k4

1√
t
e−

x2

4t

}

.
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Gaussian Family

Let X be a random variable with Gaussian distribution of parameters (µ, σ)
where µ ∈ R and σ ∈ R

+. Its probability density has the form

p (x , (µ, σ)) =
1√
2πσ

exp

(

− (x − µ)2

2σ2

)

.

Let M be induced by this family of probability distributions. The Fisher
metric gF (and its inverse) with diagonal representation referring to the
parameter set (µ, σ) is

gF =

[
1

σ2 0
0 2

σ2

]

and gF =

[
σ2 0

0 σ2

2

]

. (18)
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Operator Laplace Beltrami in the manifold M

The Laplace-Beltrami operator is defined as

∆gF u =
1

√

det (gF )





n∑

j=1

∂

∂xj

(
n∑

i=1

(
gF
)ij
√

det (gF )
∂u

∂xi

)

 (19)

where
(
gF
)ij

are the components of the inverse and its determinant is

det
(
gF
)
= 2

σ4 . For a function u defined on the manifold M, its Laplacian
is given by

∆gF u = σ2
∂2u

∂µ2
+

σ2

2

∂2u

∂σ2
= σ2uµµ +

σ2

2
uσσ. (20)

By convention, we are going to change the variables µ and σ by x and y ,
then the Laplacian will be written as

∆gF = y2uxx +
y2

2
uyy . (21)
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Heat equation defined on the manifold M

On the manifold M, the heat equation has the form ∆gF u = ut that leads
to the equation

2y2uxx + y2uyy = 2ut . (22)

Applying the previously studied extensions to this heat equation, results

2y2U[xx] + y2U[yy ] − 2U[t] + (4yuxx + 2yuyy )Y = 0 . (23)

Finding the total differentials and the extended transformations of order 1
and 2, we obtain a system of 31 equations that can be reduced to 17 of
them.
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System of equations

(1) 2y2Uxx + y2Uyy − 2Ut = 0 (10) 2Yx + Xy = 0
(2) 2Tt − 2Uu − 2y2Txx − y2Tyy = 0 (11) 4y2Tx = 0
(3) 4y2Uux − y2 [2Xxx + Xyy ] + 2Xt = 0 (12) 2y2Ty = 0
(4) 2y2Uuy − y2 [2Yxx + Yyy ] + 2Yt = 0 (13) 2Tu = 0
(5) 2y2Uu − 4y2Xx + 4yY = 0 (14) y2Xu = 0
(6) y2Uu − 2y2Yy + 2yY = 0 (15) 3y2Yu = 0
(7) Uuu − 2Xux = 0 (16) Xu − 2y2Tux = 0
(8) Uuu − 2Yuy = 0 (17) Yu − y2Tuy = 0
(9) Xuy + 2Yux = 0

Whose solution leads to the infinitesimals

T = a0 + a1t , X = A(x , y) ,

Y = B(x , y) , U = a1u + C (x , y , t) ,

where a0 and a1 are constants and C is a function that satisfies the heat
equation 2y2uxx + y2uyy = 2ut .
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Solution to the heat equation defined on the manifold M

To obtain some solutions, it will be assumed that the infinitesimals X and
Y are polynomials of degree three in the variables x and y , as

X =b0 + b1x + b2y + b3x
2 + b4xy + b5y

2 + b6x
3 + b7x

2
y + b8xy

2 + b9y
3
,

Y =c0 + c1x + c2y + c3x
2 + c4xy + c5y

2 + c6x
3 + c7x

2
y + c8xy

2 + c9y
3
.

Since these infinitesimals satisfy equations Yy −Xx = 0 and 2Yx +Xy = 0
then conditions for the coefficients bi and ci are found and therefore the
solution is written as

T = a0 + a1t

X = b0 + c2x − 2c1y +
c4

2
x2

− 4c3xy − c4y
2 +

c7

3
x3 + c8x

2y − 2c7xy
2
−

2

3
c8y

3

Y = c0 + c1x + c2y + c3x
2 + c4xy + c5y

2 + c6x
3 + c7x

2y + c8xy
2 + c9y

3 (24)

U = a1u + C(x , y , t) .

If we give values to the constant, we can achieve the operators according
to the Lie invariance condition.
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Symmetry generators

Since the solutions depend on 13 constants, then the generators of sym-
metry result when each constant is 1 and the others are zeros and it is
assumed that C (x , y , t) = 0.

b0 Γ1 = ∂
∂x

c1 Γ2 = −2y ∂
∂x

+ x ∂
∂y

c8 Γ9 =
(

x2y −
2

3
y3

)

∂

∂x
+ xy2 ∂

∂y

c2 Γ3 = x ∂
∂x

+ y ∂
∂y

c9 Γ10 = y3 ∂
∂y

c3 Γ4 = −4xy ∂
∂x

+ x2 ∂
∂y

c0 Γ11 = ∂
∂y

c4 Γ5 =
(
− 1

2
x2 − y2

)
∂
∂x

+ xy ∂
∂y

a0 Γ12 = ∂
∂t

c5 Γ6 = y2 ∂
∂y

a1 Γ13 = t ∂
∂y

+ u ∂
∂u

c6 Γ7 = x3 ∂
∂y

c7 Γ8 =
(

1

3
x3

− 2xy2
)

∂

∂x
+ x2y ∂

∂y

Table 3: Gererators of symmetries for the heat equation defined on M
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Exact solutions to the heat equation

Some of the solutions by characteristics method are

Constants Solutions

c1 = 1 u = k1

(

y2 − x2

2

)

+ k2

c2 = 1 u = k1xy + k2

c12 = 1 u = k1

t
sin
(

x√
2ty

)

+ k2

t
cos
(

x√
2ty

)

for t > 0

b0 = 1 c5 = 1
c6 = 1 c9 = 1 Each variable is constant
c0 = 1 a0 = 1

Table 4: Some solutions of the heat equation on M
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Future works

1 We should consider the infinitesimals X (x , y) y Y (x , y) as
polynomials of degree n and m and find conditions for the exponents
and coefficients.

2 Program these processes in MATLAB or Python to be applied in
high dimensions.

3 On the manifold induced by the family of q-Gaussian distributions of
parameters (µ, σ), give solution to the heat equation via symmetry
analysis, where q is the entropy index of Tsallis.
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Thank you!!


